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Deconvolution  

 
• Aim of Deconvolution 

1. Theoretical: Reconstruction of the Reflectivity function 
2. Practical: 

• Shorting of the Signal 

• Suppression of Noise 

• Suppression of Multiples 
 
 
An overview From Wikipedia, the free encyclopedia 

Jump to: navigation, search  

In mathematics, deconvolution is an algorithm-based process used to reverse the 

effects of convolution on recorded data.[1] The concept of deconvolution is widely used 

in the techniques of signal processing and image processing. Because these 

techniques are in turn widely used in many scientific and engineering disciplines, 

deconvolution finds many applications. 

In general, the object of deconvolution is to find the solution of a convolution equation 

of the form: 
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Usually, h is some recorded signal, and ƒ is some signal that we wish to recover, but 

has been convolved with some other signal g before we recorded it. The function g 

might represent the transfer function of an instrument or a driving force that was 

applied to a physical system. If we know g, or at least know the form of g, then we can 

perform deterministic deconvolution. However, if we do not know g in advance, then 

we need to estimate it. This is most often done using methods of statistical 

estimation[citation needed]. 

In physical measurements, the situation is usually closer to 

 

In this case ε is noise that has entered our recorded signal. If we assume that a noisy 

signal or image is noiseless when we try to make a statistical estimate of g, our 

estimate will be incorrect. In turn, our estimate of ƒ will also be incorrect. The lower the 

signal-to-noise ratio, the worse our estimate of the deconvolved signal will be. That is 

the reason why usually inverse filtering the signal is not a good solution. However, if 

we have at least some knowledge of the type of noise in the data (for example, white 

noise), we may be able to improve the estimate of ƒ through techniques such as 

Wiener deconvolution. 

The foundations for deconvolution and time-series analysis were largely laid by Norbert 

Wiener of the Massachusetts Institute of Technology in his book Extrapolation, 

Interpolation, and Smoothing of Stationary Time Series (1949).[2] The book was based 

on work Wiener had done during World War II but that had been classified at the time. 

Some of the early attempts to apply these theories were in the fields of weather 

forecasting and economics. 
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Applications of Deconvolution 

Seismology 

The concept of Deconvolution had an early application in reflection seismology. In 

1950, Enders Robinson was a graduate student at MIT. He worked with others at MIT, 

such as Norbert Wiener, Norman Levinson, and economist Paul Samuelson, to 

develop the "convolutional model" of a reflection seismogram. This model assumes 

that the recorded seismogram s(t) is the convolution of an Earth-reflectivity function e(t) 

and a seismic wavelet w(t) from a point source, where t represents recording time. 

Thus, our convolution equation is 

 

The seismologist is interested in e, which contains information about the Earth's 

structure. By the convolution theorem, this equation may be Fourier transformed to 

 

in the frequency domain. By assuming that the reflectivity is white, we can assume that 

the power spectrum of the reflectivity is constant, and that the power spectrum of the 

seismogram is the spectrum of the wavelet multiplied by that constant. Thus, 

 

If we assume that the wavelet is minimum phase, we can recover it by calculating the 

minimum phase equivalent of the power spectrum we just found. The reflectivity may 

be recovered by designing and applying a Wiener filter that shapes the estimated 

wavelet to a Dirac delta function (i.e., a spike). The result may be seen as a series of 

scaled, shifted delta functions (although this is not mathematically rigorous): 
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, 

where N is the number of reflection events, τ i τ i are the reflection times of each event, 

and r i are the reflection coefficients. 

In practice, since we are dealing with noisy, finite bandwidth, finite length, discretely 

sampled datasets, the above procedure only yields an approximation of the filter 

required to deconvolve the data. However, by formulating the problem as the solution 

of a Toeplitz matrix and using Levinson recursion, we can relatively quickly estimate a 

filter with the smallest mean squared error possible. We can also do deconvolution 

directly in the frequency domain and get similar results. The technique is closely 

related to linear prediction. 

Optics and other imaging 

In optics and imaging, the term "deconvolution" is specifically used to refer to the 

process of reversing the optical distortion that takes place in an optical microscope, 

electron microscope, telescope, or other imaging instrument, thus creating clearer 

images. It is usually done in the digital domain by a software algorithm, as part of a 

suite of microscope image processing techniques. Deconvolution is also practical to 

sharpen images that suffer from fast motion or jiggles during capturing. Early Hubble 

Space Telescope images were distorted by a flawed mirror and could be sharpened by 

Deconvolution. 

The usual method is to assume that the optical path through the instrument is optically 

perfect, convolved with a point spread function (PSF), that is, a mathematical function 

that describes the distortion in terms of the pathway a theoretical point source of light 

(or other waves) takes through the instrument.[3] Usually, such a point source 

contributes a small area of fuzziness to the final image. If this function can be 
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determined, it is then a matter of computing its inverse or complementary function, and 

convolving the acquired image with that. The result is the original, undistorted image. 

In practice, finding the true PSF is impossible, and usually an approximation of it is 

used, theoretically calculated[4] or based on some experimental estimation by using 

known probes. Real optics may also have different PSFs at different focal and spatial 

locations, and the PSF may be non-linear. The accuracy of the approximation of the 

PSF will dictate the final result. Different algorithms can be employed to give better 

results, at the price of being more computationally intensive. Since the original 

convolution discards data, some algorithms use additional data acquired at nearby 

focal points to make up some of the lost information. Regularization in iterative 

algorithms (as in expectation-maximization algorithms) can be applied to avoid 

unrealistic solutions. 

When the PSF is unknown, it may be possible to deduce it by systematically trying 

different possible PSFs and assessing whether the image has improved. This 

procedure is called blind deconvolution.[3] Blind deconvolution is a well-established 

image restoration technique in astronomy, where the point nature of the objects 

photographed exposes the PSF thus making it more feasible. It is also used in 

fluorescence microscopy for image restoration, and in fluorescence spectral imaging 

for spectral separation of multiple unknown fluorophores. The most common iterative 

algorithm for the purpose is the Richardson–Lucy deconvolution algorithm; the Wiener 

deconvolution (and approximations) are the most common non-iterative algorithms. 

Radio astronomy 

When performing image synthesis in radio interferometry, a specific kind of radio 

astronomy, one step consists of deconvolving the produced image with the "dirty 
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beam", which is a different name for the point spread function. A common used method 

is the CLEAN algorithm. 
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External links 

Presentations  

• Flash presentation of blind deconvolution and source separation problem  
• 3D simulations of deconvolution applied to Digital Room Correction  
• Deconvolution Explanation and Examples  

Tutorials and techniques  

• Deconvolution in optical microscopy  
• A summary of blind deconvolution techniques.  
• Biophotonics article on deconvolution (PDF)  
• Deconvolution Tutorial  

Software  

• Focus Magic, Software that uses deconvolution to fix out-of-focus blur and 
motion blur in an image  

• Unshake, a blind deconvolver Java program for terrestrial photographs (currently 
freeware)  

• SVI-wiki on 3D microscopy and deconvolution  
• Tria Image Processing, Applies deconvolution and blind deconvolution to quickly 

remove blur from images  
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• DeblurMyImage from ADPTools - uses state-of-art deconvolution methods for 
out-of-focus correction and motion correction  

Other  

• Enders Robinson Oral History at IEEE  

Retrieved from "http://en.wikipedia.org/wiki/Deconvolution" 
 
 

• Wiener deconvolution: 

Definition 

Given a system: 

 

where * denotes convolution. and: 

• is some input signal (unknown) at time .  

• is the known impulse response of a linear time-invariant system  

• is some unknown additive noise, independent of  

• is our observed signal  

Our goal is to find some so that we can estimate as follows: 

 

Where is an estimate of that minimizes the mean square error. 

The Wiener deconvolution filter provides such a . The filter is most easily 

described in the frequency domain: 
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Where: 

• and are the Fourier transforms of and , respectively at frequency .  

• is the mean power spectral density of the input signal  

• is the mean power spectral density of the noise  

• the superscript * denotes complex conjugation.  

 

The filtering operation may either be carried out in the time-domain, as above, or in the 

frequency domain: 

 

(where is the Fourier transform of ) and then performing an inverse Fourier 

transform on to obtain . 

Note that in the case of images, the arguments and above become two-dimensional; 

however the result is the same. 

Interpretation 

The operation of the Wiener filter becomes apparent when the filter equation above is 

rewritten: 
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Here, is the inverse of the original system, and is the 

signal-to-noise ratio. When there is zero noise (i.e. infinite signal-to-noise), the term 

inside the square brackets equals 1, which means that the Wiener filter is simply the 

inverse of the system, as we might expect. However, as the noise at certain 

frequencies increases, the signal-to-noise ratio drops, so the term inside the square 

brackets also drops. This means that the Wiener filter attenuates frequencies 

dependent on their signal-to-noise ratio. 

The Wiener filter equation above requires us to know the spectral content of a typical 

image, and also that of the noise. Often, we do not have access to these exact 

quantities, but we may be in a situation where good estimates can be made. For 

instance, in the case of photographic images, the signal (the original image) typically 

has strong low frequencies and weak high frequencies, and in many cases the noise 

content will be relatively flat with frequency. 

Derivation 

As mentioned above, we want to produce an estimate of the original signal that 

minimizes the mean square error, which may be expressed: 

 

Where  denotes expectation. 
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If we substitute in the expression for , the following rearrangements can be made: 

 

If we expand the quadratic, we get the following: 

 

However, we are assuming that the noise is independent of the signal, therefore: 

 

Also, we are defining the power spectral densities as follows: 

 

 

Therefore, we have: 

 

To find the minimum error value, we differentiate with respect to and set equal to 

zero. As this is a complex value, acts as a constant. 
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This final equality can be rearranged to give the Wiener filter. 

 

• Richardson–Lucy deconvolution 

The Richardson–Lucy algorithm, also known as Lucy-Richardson deconvolution, 

is an iterative procedure for recovering a latent image that has been blurred by a 

known point spread function.[1][2] 

Pixels in the observed image can be represented in terms of the point spread function 

and the latent image as 

 

where pij is the point spread function (the fraction of light coming from true location j 

that is observed at position i), uj is the pixel value at location j in the latent image, and 

di is the observed value at pixel location i. The statistics are performed under the 

assumption that uj are Poisson distributed, which is appropriate for photon noise in the 

data. 

The basic idea is to calculate the most likely uj given the observed di and known pij. 

This leads to an equation for uj which can be solved iteratively according to 

 

Where 
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It has been shown empirically that if this iteration converges, it converges to the 

maximum likelihood solution for uj.
[3] 

In problems where the point spread function pij is dependent on one or more unknown 

parameters, the Richardson–Lucy algorithm cannot be used. A later and more general 

class of algorithms, the expectation-maximization algorithms,[4] have been applied to 

this type of problem with great success 

References 

1. ^ Richardson, William Hadley (1972). "Bayesian-Based Iterative Method of 
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2. ^ Lucy, L. B. (1974). "An iterative technique for the rectification of observed 
distributions". Astronomical Journal 79 (6): 745–754. doi:10.1086/111605.  

3. ^ Shepp, L. A.; Vardi, Y. (1982), "Maximum Likelihood Reconstruction for 
Emission Tomography", IEEE Transactions on Medical Imaging 1: 113, 
doi:10.1109/TMI.1982.4307558  

4. ^ A.P. Dempster, N.M. Laird, D.B. Rubin, 1977, Maximum likelihood from 
incomplete data via the EM algorithm, J. Royal Stat. Soc. Ser. B, 39 (1), pp. 1–38  

Retrieved from 
"http://en.wikipedia.org/wiki/Richardson%E2%80%93Lucy_deconvolution" 
 
 

• Digital room correction 

Digital room correction (or DRC) is a process in the field of acoustics where digital 

filters designed to ameliorate unfavorable effects of a room's acoustics are applied to 

the input of a sound reproduction system. Modern room correction systems produce 

substantial improvements in the time domain and frequency domain response of the 

sound reproduction system. 
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History 

The use of analog filters, such as equalizers, to normalize the frequency response of a 

playback system has a long history; however, analog filters are very limited in their 

ability to correct the distortion found in many rooms. Although digital implementations 

of the equalizers have been available for some time, digital room correction is usually 

used to refer to the construction of filters which attempt to invert the impulse response 

of the room and playback system, at least in part. Digital correction systems are able to 

use acausal filters,[dubious – discuss] and are able to operate with optimal time resolution, 

optimal frequency resolution, or any desired compromise along the gabor limit. Digital 

room correction is a fairly new area of study which has only recently been made 

possible by the computational power of modern CPUs and DSPs. 

Operation 

The configuration of a digital room correction system begins with measuring the 

impulse response of the room at the listening location for each of the loudspeakers. 

Then, computer software is used to compute a FIR filter, which reverses the effects of 

the room and linear distortion in the loudspeakers. Finally, the calculated filter is loaded 

into a computer or other room correction device which applies the filter in real time. 

Because most room correction filters are acausal, there is some delay. Most DRC 

systems allow the operator to control the added delay through configurable 

parameters. 

Challenges 

DRC systems are not normally used to create a perfect inversion of the room's 

response because a perfect correction would only be valid at the location where it was 

measured: a few millimeters away the arrival times from various reflections will differ 

and the inversion will be imperfect. The imperfectly corrected signal may end up 
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sounding worse than the uncorrected signal because the acausal filters used in digital 

room correction may cause pre-echo. Room correction filter calculation systems 

employ sophisticated processing to attempt to produce an inverse filter which will work 

over a usably large area, and which avoid producing bad-sounding artifacts outside of 

that area, at the expense of peak accuracy at the measurement location. 

 

• Free convolution 

Free convolution is the free probability analog of the classical notion of convolution of 

probability measures. Due to the non-commutative nature of free probability theory, 

one has talk separately about additive and multiplicative free convolution, which arise 

from addition and multiplication of free random variables (see below; in the classical 

case, what would be the analog of free multiplicative convolution can be reduced to 

additive convolution by passing to logarithms of random variables). The notion of free 

convolution was introduced by Voiculescu in early 80s  

Free additive convolution 

Let µ and ν be two probability measures on the real line, and assume that X is a 

random variable with law µ and Y is a random variable with law ν. Assume finally that X 

and Y are freely independent. Then the free additive convolution  is the law of X 

+ Y. 

In many cases, it is possible to compute the probability measure explicitly by 

using complex-analytic techniques and the R-transform of the measures µ and ν. 
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Free multiplicative convolution 

Let µ and ν be two probability measures on the interval , and assume that X is 

a random variable with law µ and Y is a random variable with law ν. Assume finally that 

X and Y are freely independent. Then the free multiplicative convolution  is the 

law of X1 / 2YX1 / 2 (or, equivalently, the law of Y1 / 2XY1 / 2. 

A similar definition can be made in the case of laws µ,ν supported on the unit circle {z: | 

z | = 1}. 

Explicit computations of multiplicative free convolution can be carried out using 

complex-analytic techniques and the S-transform. 

Applications of free convolution 

• Free convolution can be used to give a proof of the free central limit theorem.  

• Free convolution can be used to compute the laws and spectra of sums or 

products of random variables which are free. Such examples include: random 

walk operators on free groups (Kesten measures); and asymptotic distribution of 

eigenvalues of sums or products of independent random matrices.  

Through its applications to random matrices, free convolution has some strong 

connections with other works on G-estimation of Girko. 

The applications in wireless communications, finance and biology have provided a 

useful framework when the number of observations is of the same order as the 

dimensions of the system. 

References 

1. ^ Voiculescu, D., Addition of certain non-commuting random variables, J. Funct. Anal. 66 (1986), 323–346  



Diyala University - College of Engineering            

 Computer & Software Engineering Department  

Digital Signal Processing 

Third Year                                                                                                                                           Lecture 5 

  ---------------------------------------------------------------------------------------------------------------------------                 

---------------------------------------------------------------------------------------------------------------------------------- 

By: Zeyad Al-Hamdany                                                                         

(16) 

2. ^ Voiculescu, D., Multiplciation of certain noncommuting random variables , J. Operator Theory 18 (1987), 

2223–2235.  

• "Free Deconvolution for Signal Processing Applications", O. Ryan and M. Debbah, ISIT 2007, pp. 
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External links 

• Alcatel Lucent Chair on Flexible Radio  

• http://www.cmapx.polytechnique.fr/~benaych  

• http://folk.uio.no/oyvindry  

Retrieved from "http://en.wikipedia.org/wiki/Free_convolution" 

 
 
 

• Numerical evaluation of Cross-correlation 
 

 
 
In Fourier domain: 
Cross-correlation = Multiplication of Amplitude spectrum and Subtraction of Phase 

spectrum 
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Circular Convolution 
 
 
1. Introduction 

You should be familiar with Discrete-Time Convolution1, which tells us that given two 

discrete-time signals x [n], the system's input, and h [n], the system's response, we 

define the output of the system as 

 

 
 

When we are given two DFTs (finite-length sequences usually of length N), we cannot 

just multiply them together as we do in the above convolution formula, often referred to 

as linear convolution. Because the DFTs are periodic, they have nonzero values for n 

≥  N and thus the multiplication of these two DFTs will be nonzero for n ≥  N. We need 

to define a new type of convolution operation that will result in our convolved signal 

being zero outside of the range n = {0, 1. . . N − 1}. This idea led to the development of 

circular convolution, also called cyclic or periodic convolution. 

 
2. Circular Convolution Formulas 

 

What happens when we multiply two DFT's together, where Y [k] is the DFT of y [n]? 

 

Y [k] = F [k] H [k] 

 

When 0 ≤  k ≤  N − 1 
 
Using the DFT synthesis formula for y [n] 
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2.1 Steps for Cyclic Convolution 

Steps for cyclic convolution are the same as the usual convo, except all index 

calculations are done "mod N" = "on the wheel" 

Steps for Cyclic Convolution 

• Step 1: "Plot" f [m] and h [((−m))N] 

• Step 2: "Spin" h [((−m))N] n notches ACW (counter-clockwise) to get h [((n − m))N] 

(i.e. Simply rotate the sequence, h [n], clockwise by n steps). 

• Step 3: Pointwise multiply the f [m] wheel and the h [((n − m))N] wheel. 

Sum = y [n] 

 

 
Figure 3: Two discrete-time signals to be convolved. 
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Multiply f [m] and sum to yield: y [2] = 3 

• h [((3 − m))N] 

Multiply f [m] and sum to yield: y [3] = 1 

 
 
2.2 Alternative Algorithm 

Alternative Circular Convolution Algorithm 

 

 

 
Figure 7 

• Step 1: Calculate the DFT of f [n] which yields F [k] and calculate the DFT of h [n] 

which yields H [k]. 

• Step 2: Pointwise multiply Y [k] = F [k]H [k] 

• Step 3: Inverse DFT Y [k] which yields y [n] 

Seems like a roundabout way of doing things, but it turns out that there are extremely 

fast ways to calculate the DFT of a sequence.  

 

To circularily convolve 2 N-point sequences: 

 

 
 
 

 
 


